Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature reduction of hyperspectral images: Discriminant analysis and the first principal component

When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...

متن کامل

Principal Component Analysis for Hyperspectral Image Classification

The availability of hyperspectral images expands the capability of using image classification to study detailed characteristics of objects, but at a cost of having to deal with huge data sets. This work studies the use of the principal component analysis as a preprocessing technique for the classification of hyperspectral images. Two hyperspectral data sets, HYDICE and AVIRIS, were used for the...

متن کامل

Tensor principal component analysis via convex optimization

This paper is concerned with the computation of the principal components for a general tensor, known as the tensor principal component analysis (PCA) problem. We show that the general tensor PCA problem is reducible to its special case where the tensor in question is supersymmetric with an even degree. In that case, the tensor can be embedded into a symmetric matrix. We prove that if the tensor...

متن کامل

Spatial/Spectral Analysis of Hyperspectral Image Data

The integration of spatial and spectral responses in hyperspectral image data analysis has been identified as a desirable objective by the remote sensing community. However, most available attempts are based on the consideration of spectral information separately from spatial information, and thus the two types of information are not treated simultaneously. In this paper, we describe our backgr...

متن کامل

Morphological Principal Component Analysis for Hyperspectral Image Analysis

This article deals with the issue of reducing the spectral dimension of a hyperspectral image using principal component analysis (PCA). To perform this dimensionality reduction, we propose the addition of spatial information in order to improve the features that are extracted. Several approaches proposed to add spatial information are discussed in this article. They are based on mathematical mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters

سال: 2017

ISSN: 1545-598X,1558-0571

DOI: 10.1109/lgrs.2017.2686878